首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21789篇
  免费   1686篇
  国内免费   756篇
电工技术   464篇
综合类   1356篇
化学工业   7538篇
金属工艺   739篇
机械仪表   742篇
建筑科学   1601篇
矿业工程   939篇
能源动力   3345篇
轻工业   1831篇
水利工程   195篇
石油天然气   786篇
武器工业   79篇
无线电   207篇
一般工业技术   1392篇
冶金工业   1792篇
原子能技术   764篇
自动化技术   461篇
  2024年   49篇
  2023年   374篇
  2022年   734篇
  2021年   837篇
  2020年   756篇
  2019年   619篇
  2018年   644篇
  2017年   642篇
  2016年   693篇
  2015年   604篇
  2014年   1271篇
  2013年   1517篇
  2012年   1508篇
  2011年   1716篇
  2010年   1268篇
  2009年   1283篇
  2008年   1034篇
  2007年   1344篇
  2006年   1094篇
  2005年   875篇
  2004年   833篇
  2003年   807篇
  2002年   668篇
  2001年   551篇
  2000年   493篇
  1999年   408篇
  1998年   268篇
  1997年   241篇
  1996年   191篇
  1995年   192篇
  1994年   146篇
  1993年   117篇
  1992年   120篇
  1991年   77篇
  1990年   48篇
  1989年   55篇
  1988年   39篇
  1987年   24篇
  1986年   22篇
  1985年   19篇
  1984年   11篇
  1983年   13篇
  1982年   3篇
  1981年   6篇
  1980年   2篇
  1979年   5篇
  1975年   1篇
  1974年   3篇
  1971年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
61.
Despite its shortcomings, fossil-based fuels are still utilized as the main energy source, accounting for about 80% of the world's total energy supply with about one-third of which comes from coal. However, conventional coal-fired power plants emit relatively higher amounts of greenhouse gases, and the derivatives of air pollutants, which necessitates the integration of environmentally benign technologies into the conventional power plants. In the current study, a H2–CO synthesis gas fueled solid oxide fuel cell (SOFC) is integrated to the coal-fired combined cycle along with a concentrated solar energy system for the purpose of promoting the cleaner energy applications in the fossil fuel-based power plants. The underlying motivation of the present study is to propose a novel design for a conventional coal-fired combined cycle without altering its main infrastructure to make its environmentally hazardous nature more ecofriendly. The proposed SOFC integrated coal-fired combined cycle is modeled thermodynamically for different types of coals, namely pet coke, Powder River Basin (PRB) coal, lignite and anthracite using the Engineering Equation Solver (EES) and the Ebsilon software packages. The current results show that the designed hybrid energy system provide higher performance with higher energy and exergy efficiencies ranging from 70.6% to 72.7% energetically and from 35.5% to 43.8% exergetically. In addition, carbon dioxide emissions are reduced varying between 18.31 kg/s and 30.09 kg/s depending on the selected coal type, under the assumption of 10 kg per second fuel inlet.  相似文献   
62.
Solid oxide fuel cells (SOFCs) are considered an important technology in terms of high efficiency and clean energy generation. Flat-tubular solid oxide fuel cell (FT-SOFC) which is a combination of tubular and planar cell geometries stands out with its performance values and low costs. In this study, the performance of an FT-SOFC is analyzed numerically by using finite element method-based design as a result of changing parameters by using different fuels which are pure hydrogen and coal gas with various proportions of CO. In addition, cell performance values for different temperatures were analyzed and interpreted. Analyzes have been performed by using COMSOL Multiphysics software. The rates of CO composition used are 10%, 20%, and 40%, respectively. In addition, the air was used as the oxidizer in all cases. The cell voltage and average cell power of the FT-SOFC were examined under the 800 °C operating condition. The maximum power value and current density value were obtained as 710 W/m2 and 1420 A/m2 for the flat-tubular cell, respectively. As a result of the study, it was observed that the maximum cell power densities increased with increasing temperature. Analysis results showed that FT-SOFCs have suitable properties for different fuel usage and different operating temperatures. High-performance values and design features in different operating conditions are expected to make FT-SOFC the focus of many studies in the future.  相似文献   
63.
《Ceramics International》2022,48(11):15703-15710
Ceramic fibers in various forms with different fiber sizes are tested to improve the sealing performance of glass ceramic seals for microtubular solid oxide fuel cell applications. In this regard, several sealing pastes are prepared by mixing each ceramic fibers type with glass ceramics at 1.25 wt %. Five layered microtubular anode supported cells are also fabricated by extrusion and dip coating methods to evaluate the sealing performance of the composite sealants. The pastes are applied between the cells and gas manifolds made of Crofer22 APU. The electrochemical and sealing performances at an operating temperature of 800 °C under hydrogen are investigated after the glass forming process. Microstructures of the sealants are also examined by a scanning electron microscope. Experimental investigations reveal that the cells sealed by the pastes with ceramic bulk fiber and ceramic fiber rope gasket show acceptable open circuit potentials close to the theoretical one. These cells can be also pressurized up to around 150 kPa back pressure in the sealing performance tests. On the other hand, the pastes without any filler, with ceramic rope and with ceramic blanket exhibit poor sealing performance due to gas leakage originated from flowing of the main glass ceramic matrix from the joints. Therefore, ceramic bulk fiber and ceramic fiber rope gasket are found to behave as a stopper and can be used to prevent glass ceramics from flowing for microtubular solid oxide fuel cells or similar applications.  相似文献   
64.
W-doped La0·5Sr0·5Fe0·9W0·1O3-δ (LSFW) was prepared and evaluated as a symmetric electrode for solid oxide fuel cells (SSOFCs). Phase and structural stability of LSFW under both reducing and oxidizing atmospheres was studied. The oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) mechanisms were investigated by using electrochemical impedance spectra (EIS) and distribution of relaxation times (DRT). Electrode polarization resistance (Rp) of LSFW are 0.08 and 0.16 Ω cm2 in air and wet hydrogen at 800 °C, respectively. DRT results indicate that the rate-limiting step of LSFW at 800 °C in cathodic conditions and anodic conditions are related to oxygen diffusion and hydrogen adsorption/diffusion, respectively. A La0·8Sr0.2Ga0.8Mg0·2O3-δ (LSGM) electrolyte-supported single cell using LSFW electrodes shows a maximum power density of 617.3 mW cm−2 at 800 °C with considerable stability and reversibility, which enables LSFW a promising SOFCs symmetric electrode material.  相似文献   
65.
In recent years, public attention has been increasingly attracted to solving two inextricably linked problems - preventing the depletion of natural resources and protecting the environment from anthropogenic pollution. The annual consumption of livestock waste for biogas production is about 240 thousand m3 per year, which is 0.17% of the total manure produced at Russian agricultural enterprises. At present, the actual use of organic waste potentially suitable for biogas production is 2–3 orders of magnitude lower than the existing potential for organic waste. Currently, hydrogen energy is gaining immense popularity in the world due to the problem of depletion of non-renewable energy sources - hydrocarbons, and environmental pollution caused by their increasing consumption. Of particular interest is the dark process of producing hydrogen-containing biogas in the processing of organic waste under anaerobic conditions, which allows you to take advantage of both energy production and solving the problem of organic waste disposal. An energy analysis of a two-stage anaerobic liquid organic waste processing system with the production of hydrogen- and methane-containing biogases based on experimental data obtained in a laboratory plant with increased volume reactors was performed. The energy efficiency of the system is in the range of 1.91–2.74. Maximum energy efficiency was observed with a hydraulic retention time of 2.5 days in a dark fermentation reactor. The cost of electricity to produce 1 m3 of hydrogen was 1.093 kW·h with a hydraulic retention time of 2.5 days in the dark fermentation reactor. When the hydraulic retention time in the dark fermentation reactor was 1 day, the specific (in ratio to the processing rate of organic waste) energy costs to produce of 1 m3 of hydrogen were minimal in the considered hrt range, and amounted to 26 (W/m3 of hydrogen)/(m3 of waste/day). Thus, the system of two-stage anaerobic processing of liquid organic waste to produce hydrogen and methane-containing biogases is an energy-efficient way to both produce hydrogen and process organic waste.  相似文献   
66.
The chief intent of this review is to explain the different extraction techniques and efficiencies for the recovery of protein from food waste (FW) sources. Although FW is not a new concept, increasing concerns about chronic hunger, nutritional deficiency, food security, and sustainability have intensified attention on alternative and sustainable sources of protein for food and feed. Initiatives to extract and utilize protein from FW on a commercial scale have been undertaken, mainly in the developed countries, but they remain largely underutilized and generally suited for low-quality products. The current analysis reveals the extraction of protein from FW is a many-sided (complex) issue, and that identifies for a stronger and extensive integration of diverse extraction perspectives, focusing on nutritional quality, yield, and functionality of the isolated protein as a valued recycled ingredient.  相似文献   
67.
Perovskite oxides with cobalt and strontium element exhibit severe degradation during the operation for the solid oxide fuel cells (SOFC). Here, we report stable non-cobalt and non-strontium La1-xNi0.6Fe0.4O3 perovskite cathodes with improved oxygen reduction reaction (ORR) activity. A-site deficient La1-xNi0.6Fe0.4O3 cathodes within 8 at.% all exhibit the invariable phase structure with LaNi0.6Fe0.4O3 (LNF), and the matched thermal expansion coefficient with that of the (Ce0.90Gd0.10)O1.95 (GDC) electrolyte. The polarization resistance of the La0.94Ni0.6Fe0.4O3 (LNF94) cathode is 0.61 Ω cm2 at 750 °C in air, which is 1/5 of the LaNi0.6Fe0.4O3 (2.78 Ω cm2). The peak power density of the corresponding single cell with LNF94 cathode is 0.37 W cm−2 at 750 °C, which is 2.36 times higher than that of the single cell with LNF cathode (0.11 W cm−2). We further study the long-term stability of LNF and LNF94 cathodes, the polarization resistance of the LNF94 electrode slightly fluctuates around 0.18 Ω cm2 during 50 h operation at 800 °C, while the polarization resistance of the LNF increases by about 15%. This work highlights the A-site deficient LNF as an effective and stable non-cobalt and non-strontium cathode for the intermediate temperature solid oxide fuel cells.  相似文献   
68.
The cobalt/iron-containing perovskites are the most promising cathodes for the intermediate-temperature solid oxide fuel cell (IT-SOFC). However, these cathodes are generally not directly applied on the currently available commercial yttria-stabilized zirconia (YSZ) electrolyte due to the issues of over-firing, harmful reaction and thermal incompatibility. BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) which contains both zirconium and yttrium ions can theoretically be more compatible with the YSZ electrolyte. This paper focuses on the surficial and interfacial properties of BCFZY directly prepared with YSZ under different conditions. The surface of BCFZY by the glycine-nitrate process (GNP) can form the nanoparticles in contrast to that by solid-state reaction (SSR). The peak power density of the cell with BCFZY-GNP cathode directly on YSZ electrolyte can reach 1250 mW cm−2 at 750 °C, which is hardly achieved on the reported traditional cobalt/iron-containing cathodes. It is proved that BCFZY-GNP cathode fired at 900 °C can show more distinct nanoparticles with extensive specific surface area and better BCFZY|YSZ interface, which can promote both oxygen exchange and ion incorporation processes.  相似文献   
69.
South Korea is pushing for the waste-to-hydrogen (W2H) project to reduce greenhouse gases and utilize plastic and vinyl waste (PVW) while reducing environmental pollution from PVW. This research seeks to estimate additional willingness to pay (WTP) for electricity produced using W2H over that produced using traditional power sources, such as coal and nuclear. For the purpose of the estimation, a contingent valuation survey of 1000 people was performed employing the closed-ended one-and-one-half-bound question during November 2020. A spike model is utilized to reflect zero WTP values that a number of interviewees reported in the survey. Several factors affecting the additional WTP were also analyzed to derive implications. The average WTP was computed as KRW 27.7 (USD 0.025) per kWh with statistical significance, which reaches 26.4% of the electricity price. One more point to note is that 54.3% of the respondents stated a zero WTP as they thought that W2H is of no value to them or were worried that the W2H project could increase electricity bills.  相似文献   
70.
Solar thermochemical hydrogen production with energy level upgraded from solar thermal to chemical energy shows great potential. By integrating mid-and-low temperature solar thermochemistry and solid oxide fuel cells, in this paper, a new distributed energy system combining power, cooling, and heating is proposed and analyzed from thermodynamic, energy and exergy viewpoints. Different from the high temperature solar thermochemistry (above 1073.15 K), the mid-and-low temperature solar thermochemistry utilizes concentrated solar thermal (473.15–573.15 K) to drive methanol decomposition reaction, reducing irreversible heat collection loss. The produced hydrogen-rich fuel is converted into power through solid oxide fuel cells and micro gas turbines successively, realizing the cascaded utilization of fuel and solar energy. Numerical simulation is conducted to investigate the system thermodynamic performances under design and off-design conditions. Promising results reveal that solar-to-hydrogen and net solar-to-electricity efficiencies reach 66.26% and 40.93%, respectively. With the solar thermochemical conversion and hydrogen-rich fuel cascade utilization, the system exergy and overall energy efficiencies reach 59.76% and 80.74%, respectively. This research may provide a pathway for efficient hydrogen-rich fuel production and power generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号